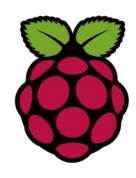
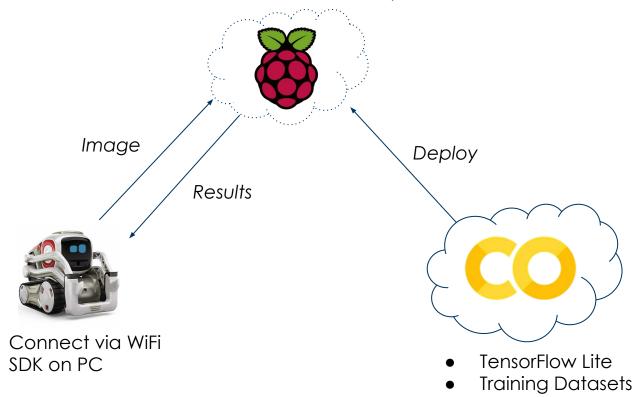
CS293B Course Project


Deep Learning and Object Classification at the Edge

Project Plan

- Configure a system that uses a robot's camera feed and a trained deep learning model to perform object classification at the Edge.
 - Architecture similar to Where's The Bear?


Edge

Cloud

Architecture

- Model & Labels
- TensorFlow Lite Interpreter

Department of Computer Science

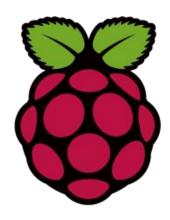
Cloud: Model Training and Data Storage

Google Colaboratory

- Hosted Jupyter notebook service
- Free access to computing resources (GPUs)

TensorFlow Lite

- Set of tools to help developers run TensorFlow models on mobile, embedded, and IoT devices.
 - TF Lite Converter
 - Converts TensorFlow models into an efficient form for use by the interpreter.
 - TF Lite Interpreter
 - Runs specially optimized models on mobile phones, embedded Linux devices and microcontrollers.

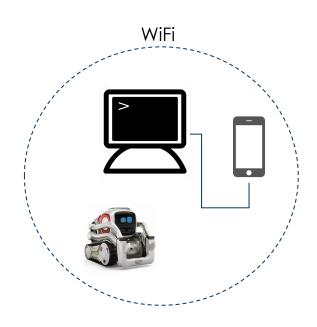

Edge: Handle Requests and Run Inference

Files

- TensorFlow Lite Model & Labels
 - 13 MB
- TensorFlow Lite Interpreter
 - 5 MB
- loT Image
 - 8 kB

Client Requests

- Classify
- Exit


IoT: Cozmo Robot

System

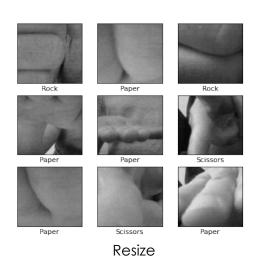
- Cozmo's engine packaged in iPhone app
- Cozmo connected to iPhone via WiFi network
- iPhone connected to PC via USB
 - Cozmo SDK ran on PC

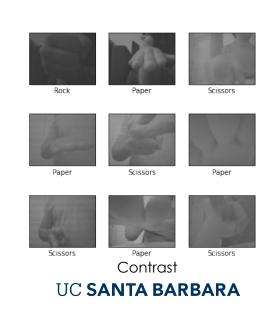
Functions

- Remote Control & Camera Feed
 - Controlled via Flask web page
- Send images
 - Send via scp to Edge

Classification: Off-the-shelf

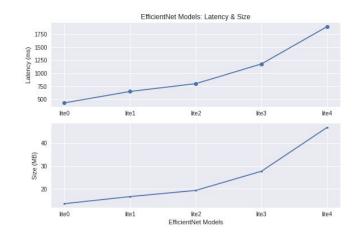
- Pre-trained model and public dataset
- Model: Mobilenet
 - 8.9 MB
 - ~300 ms inference time
- Dataset: ImageNet 2012
 - 999 classes
 - Cup, Toaster, Stove, Microwave, Candle, etc.
 - ~1,000 training images/class

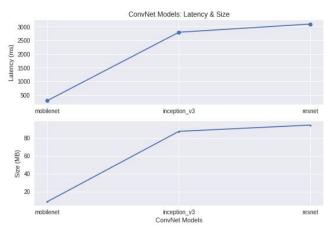



Classification: Rock, Paper, Scissors

- Dataset: Images from Cozmo
 - ~25,000 training images
 - ~4,000 raw images
 - ~21,000 augmented images
 - Random contrast/brightness/crop/resize/etc.

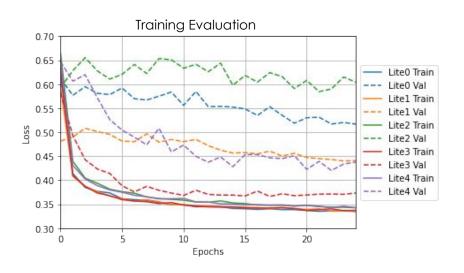
Raw

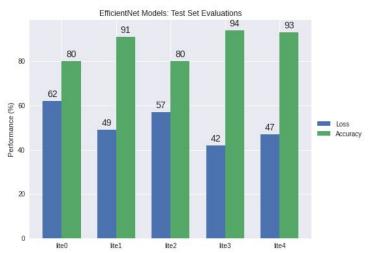




Department of Computer Science

Classification: Rock, Paper, Scissors


- Model: EfficientNets
 - Mobile-size models
 - Quick inference
 - Minimize parameters and FLOPS, maximize accuracy
 - Compound Scaling Method



Classification: Rock, Paper, Scissors

- Model: EfficientNets
 - Fastest Inference: EfficientNet-lite0 (14 MB)
 - Highest Accuracy: EfficientNet-lite3 (28 MB)

DEMO