DeepFake Generation & Detection

David Weinflash

Department of Computer Science

Research Papers

DeepFake Generation

- First Order Motion Model for Image Animation
 - Siarohin *et al.*
 - Neural Information Processing Systems (NeurIPS) 2019

DeepFake Detection

- Video Face Manipulation Detection Through Ensemble of CNNs
 - Bonettini *et al.*
 - International Conference on Pattern Recognition (ICPR) 2020

DeepFake Generation

First Order Motion Model for Image Animation

Problem

• Image Animation:

• Automatically synthesize videos by combining the contents of a source image with the motion patterns derived from a driving video.

Problem

• Image Animation:

• Automatically synthesize videos by combining the contents of a source image with the motion patterns derived from a driving video.

• Challenge:

• Traditional approaches (GANs and VAEs) rely on pre-trained models built upon ground-truth data annotations.

Problem

- Solution:
 - Introduce a framework that does not depend on prior information or annotated data sets.

Problem

- Solution:
 - Introduce a framework that does not depend on prior information or annotated data sets.

• Framework:

- Motion Estimation Module
 - Encoder-decoder network predicts a dense motion field aligning the driving video and the source image.
- Image Generation Module
 - Utilize a CNN and output of *motion estimation module* to generate a moving version of the source image.

UC SANTA BARBARA

Department of Computer Science

Analysis

- Claim #1:
 - Our method significantly outperforms state-of-the-art image animation methods and can handle high-resolution datasets where other approaches generally fail.

1 Mbps

UC SANTA BARBARA

Department of Computer Science

8 Mbps

Analysis

- Claim #2:
 - We introduce an occlusion-aware generator, which adopts an occlusion mask to inpaint object parts that are not visible in the source image and should be inferred from the context.

Analysis

- Claim #3:
 - One limitation of transferring relative motion is that we need to assume that the objects in the source image and driving video have similar poses.

Department of Computer Science

DeepFake Detection

Video Face Manipulation Detection Through Ensemble of CNNs

Problem

- DeepFake Detection:
 - Identifying DeepFake videos in real-world scenarios.

Problem

- DeepFake Detection:
 - Identifying DeepFake videos in real-world scenarios.
- Challenge:
 - Detecting the ever-growing production of DeepFakes across the internet requires a solution that is robust, efficient and scalable.

Problem

- Solution:
 - Fuse together state-of-the-art CNNs to accurately detect facial manipulation artifacts in a minimal amount of time.

Problem

- Solution:
 - Fuse together state-of-the-art CNNs to accurately detect facial manipulation artifacts in a minimal amount of time.

Framework:

- EfficientNet Models
 - Use <u>attention layers</u> to teach the network what regions of the input image are most important to analyze during classification.
 - Use <u>siamese training</u> to extrapolate additional information from the data and uncover generalizabilities.

Analysis

- Claim #1:
 - Network fusion helps both the accuracy of the DeepFake detection and the quality of the detection.

Department of Computer Science

Analysis

- Claim #2:
 - To make our models more robust, we perform data augmentation operations (downscaling, horizontal flipping, noise addition, etc.) on the input faces.

Analysis

- Claim #2:
 - To make our models more robust, we perform data augmentation operations (downscaling, horizontal flipping, noise addition, etc.) on the input faces.

DeepFake Detection Score per Video

Department of Computer Science

Analysis

- Claim #3:
 - Roughly modeled eyes and teeth, showing excessively white regions, are the main trademarks of DeepFake generation methods.

Analysis

- Claim #3:
 - Roughly modeled eyes and teeth, showing excessively white regions, are the main trademarks of DeepFake generation methods.

DeepFake Detection Score per Video

Department of Computer Science

Thank you!