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Introduction
Deepfake videos, or the synthetic videos derived from
altering a person in original content, have becomemore
ubiquitous as machine learning algorithms have be-
come smarter and computer hardware more powerful.
Currently, the most prevalent application of deepfake
videos may be character replacement – where, for ex-
ample, an actor’s face in an original �lm is replaced
with the face of another actor. An equally disturbing
application in deepfakes, however, is blackmail. In deep-
fake blackmail, counterfeit yet convincing videos are
generated to falsely incriminate a victim. Perhaps the
most e�ective way to generate such counterfeit videos
is by way of image animation, in which an object in a
source image is animated according to the motion of a
driving video. To evaluate the e�ectiveness and analyze
the risks introduced by such techniques, it is necessary
to critically evaluate the latest and greatest research.
Thus, the following report examines the image genera-
tion techniques proposed in First Order Motion Model
for Image Animation, a research paper introduced at
the 2019 Advances in Neural Information Processing
Systems (NeurIPS) conference. After creating and eval-
uating deepfake videos, the content is then used to aid
the creation of forensic tools to help accurately distin-
guish between real and fake media content.

Keywords: DeepFake, Image Animation, Generators

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for pro�t or commercial
advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee.
Request permissions from permissions@acm.org.
CS281: Advanced Topics in Computer Vision, UC Santa Barbara
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
h�ps://doi.org/10.1145/1122445.1122456

1 Overview
1.1 Problem
Image animation, or the task of automatically synthesiz-
ing videos by combining the contents of a source image
with the motion patterns derived from a driving video,
has often been achieved by utilizing Generative Adver-
sial Networks (GANs) and Variational Auto-Encoders
(VAEs). This approach, however e�ective, relies on pre-
trained models built upon ground-truth data annota-
tions. Such required annotated datasets are not, unfor-
tunately, widely available and apply to only a small
subset of object categories. Thus, GANs and VAEs are
limited in their scope and e�ciency, constrained to an-
imating only the images available in costly annotated
datasets.
In order to address the data limitation issue constrain-

ing GANs and VAEs, the authors of First Order Motion
Model for Image Animation propose a framework that
achieves image animation without relying on prior in-
formation or annotated datasets. Speci�cally, the au-
thors introduce a framework that does not depend on
labels or custom training procedures speci�c to indi-
vidual objects. And, unlike previous computer graphic
solutions, the authors’ proposed system tackles image
animation without relying on prior information about
the animated objects (e.g. 3Dmodels). Indeed, the frame-
work proposed by Siarohin et al. expands the scope of
the state of the art in image animation, allowing any
arbitrary object of the same object category to be ani-
mated according to the motions of a driving video.

1.2 Framework
The framework proposed by Siarohin et al. is composed
of two main modules, or a motion estimation module
and an image generation module. As a whole, the frame-
work is tasked with animating an object depicted in
a source image S based upon the motion of a similar
object in a driving video D. In order to accomplish such
a task, the framework is �rst trained to reconstruct a
set of training videos, where an encoder-decoder net-
work a part of the motion estimation module learns to
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encode the motion between frame pairs using keypoint
displacements and local a�ne transformations. After
training, the framework is deployed at test time to use
the motion learned in the motion estimation module
as input to the image generation module, where a con-
volutional neural network renders the source image
S moving in accordance with the motion learned in
the driving video D. The following subsections provide
more detail on each module and explain how the sys-
tem as a whole achieves image animation without prior
information or labeled datasets.

1.2.1 MotionEstimationModule. Primarily, the pur-
pose of the motion estimation module is to predict a
dense motion �eld from a frame d of the driving video
D and align it to the source image S. By modeling the
motion �eld with a function that maps each pixel loca-
tion in D to its corresponding location in S, the motion
estimation module successfully aligns the feature maps
computed from S with the object pose in D. In order to
estimate the corresponding keypoints between the driv-
ing video and the source image, an encoder-decoder
network is employed with a U-Net architecture and
�nal softmax layer. The output of the network is thus
a collection of predicted heatmaps that can be inter-
preted as keypoint detection con�dence maps. Finally,
after aligning and outputing the dense motion �eld, the
motion estimation module outputs an occlusion mask,
allowing the generator in the image generation module
to determine which image parts of the driving video
can be reconstructed by warping the source image and
which parts should be inpainted, or inferred by the
generator.

1.2.2 Image GenerationModule. Given the source
image and the output of the motion estimation module
– or a dense motion �eld and an occlusion mask – the
image generation module produces an animated version
of the source image that mimics the motion found in the
driving video. Speci�cally, the image generation mod-
ule utilizes a convolutional neural network to generate
a moving version of the source image, using the de-
rived keypoints of the source image and driving video
to transform the source image. Based on the input of
the occlusion mask, the generator network either uses
existing features to warp the source image or infers and
inpaints new image features to match the motion of the
driving video. What results is a sequential collection of
source image frames that imitate the motion found in
the driving video.

2 Evaluation
Among all the advancements in image animation pro-
posed by Siarhohin et al., perhaps the most signi�cant
is the ability to achieve image animation without rely-
ing on prior information or annotated datasets. Indeed,
accomplishing such a feat would save signi�cant time
and resources when performing image animation. In
order to verify this and the work’s other top claims, I
performed a range of di�erent experiments, deploying
the framework proposed by Siarhohin et al. to perform
image animation on my own custom dataset. What im-
mediately became clear is that Siarhohin’s framework
is very successful at transferring motion from a driving
video and applying it convincingly to a source video;
the framework, trained without prior information or
annotated datasets, is indeed remarkably e�ective. To
justify the other claims set forth in the paper, I per-
formed the following experiments, analyzing how well
the paper’s proclaimed accomplishments matched my
own personal results.
Claim #1: Our method signi�cantly outperforms state-
of-the-art image animation methods and can handle
high-resolution datasets where other approaches gener-
ally fail.

In order to verify this claim, I tested the First Order
Motion Model on a dataset that included both high
and low-resolution driving videos. Speci�cally, the
bitrates of the input videos ranged from 110 Kbps on
the low-end to 8 Mbps on the high-end. Qualitative
methods were used to judge the e�ectiveness of the
model in transferring motion from the driving video
to the source image, where a better quality source
video translates to a more convincing deepfake video.
Suprisingly, themodel performed best when analyzing
mid-resolution videos, or videos with a bitrate of 1
Mbps. Output deepfake videos generated from very
high or very low-resolution driving videos were less
convincing, as demonstrated by Figure 1.
Claim #2: We introduce an occlusion-aware genera-
tor, which adopts an occlusion mask automatically es-
timated to indicate object parts that are not visible in
the source image and that should be inferred from the
context.

According to Siarohin et al., the image generator a
part of the First Order Motion Model is capable of in-
ferring and inpainting features in the source video
not available in the original source image. The image
generator accomplishes such a feat with the help of
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Figure 1. The model performed best when analyzing mid-resolution videos. Driving video bitrates
ordered clockwise from the top-left: 110 Kbps, 1 Mbps, 8 Mbps.

Figure 2. The model struggled to inpaint features not originally illustrated in the source image.

Figure 3.Model performance will su�er if the driving video and source image do not share similar poses.

an occlusion mask, indicating which features should
be warped and which should be inferred. While the
authors demonstrated the e�ectiveness of the occlu-
sion mask in generating full-body animations with
the TaiChi dataset, the mask was less e�ective in re-
constructing facial gestures in my own experiments.
Figure 2 demonstrates the image generator’s struggle
when attempting to inpaint facial features not origi-
nally illustrated in the source image.
Claim #3: It’s important to note that one limitation of
transferring relative motion is that we need to assume
that the objects in (1 and ⇡1 have similar poses.

As expected, the image generator does indeed per-
form poorly when attempting to transfer the motions
from a video of one pose to a source image of another
pose. To demonstrate this limitation, I attempted to
transfer the video gestures from the pro�le of a face
to an image of a face looking directly at the camera.
The results were less than convincing, indicating the
importance of pose when transferring the animation
of one object to another. Figure 3 illustrates this lim-
itation and suggests an avenue for improvement in
image animation.
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Introduction
Just as advances in machine learning gave rise to Deep-
Fake videos, so to can modern machine learning models
be put to use to realiably detect and segment fake media
content. Such an application of machine learning is ar-
guably more important, as the rise of DeepFake videos
brings with it a long list of dangerous societal side ef-
fects – namely distrust in media, blackmail and cyber
bullying, to name a few. Indeed, machine learning may
be the solution best positioned to detect modern Deep-
Fake videos, as traditional video forensic techniques
oftentime rely on predictable and conventional forgery
strategies to detect manipulated videos. Recognizing
this opportunity, the authors of Video Face Manipulation
Detection Through Ensemble of CNNs introduce their
own specialized deep learning system, utilizing their
framework to e�ciently distinguish between real and
altered images. Using an ensemble of state-of-the-art
models, attention mechanisms and a siamese training
strategy, Bonettini et al. demonstrate that computer
vision models may be applied e�ectively to extricate
DeepFake videos from original media content. By cre-
atively analyzing the results of their framework, the
authors uncover the footprints of altered videos and
pave the way for future forensic techniques to more
e�ciently and e�ectively identify DeepFake videos.
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1 Overview
1.1 Problem
Identifying DeepFake videos in real-world scenar-

ios is no easy task. For one, the video manipulation
footprints left behind by generative networks are often
very subtle and di�cult to detect. Just as generative
networks are hard to formally model and explain, so
too are their footprints di�cult to reliably predict and
anticipate. What is more, the initial DeepFake prod-
ucts output from generative networks often undergo
many di�erent modi�cations and alterations as they are
shared across social media platforms. Resizing, refor-
matting and other coding steps all make detecting Deep-
Fake content that muchmore di�cult. Finally, detecting
the ever growing production of DeepFakes across the
internet requires a solution that is both e�cient and
scaleable, meaning that the most promising DeepFake
detectors must be computationally inexpensive and
lightweight.
Recognizing these challenges, the authors of Video

Face Manipulation Detection Through Ensemble of CNNs
propose a modern solution that makes use of the most
accurate computer vision models available to detect fa-
cial manipulation artifacts in a minimal amount of time.
Speci�cally, the framework proposed by Bonettini et al.
is capable of analyzing at least 4,000 videos in less than
9 hours, requires at most a single NVIDIA P100 GPU
for top performance and occupies less than 1GB of disk
space. What follows is an analysis of the author’s pro-
posed framework and the e�ectiveness of their solution,
where I experiment with deploying the system on my
own custom dataset in an attempt to e�ciently detect
DeepFake videos and recreate the author’s publshed
results.

1.2 Framework
Built o� the premise that model ensembling leads

to better prediction performance, Bonettini et al. pro-
pose a system that combines multiple Convolutional
Neural Network (CNN) models to perform binary clas-
si�cation, predicting whether or not an input image
is the product of a deep neural network. Speci�cally,

1

https://doi.org/10.1145/1122445.1122456


CS281: Advanced Topics in Computer Vision, UC Santa Barbara David Weinflash

convolutional neural networks obtained from the E�-
cientNet family of models are used to build the system,
as E�cientNets have been shown to be among the most
accurate (achieved 83.8% accuracy when categorizing
the ImageNet dataset) and least computationally expen-
sive (19 million parameters, 4.2 billion FLOPS) models
in today’s top performing class of neural networks. In
order to e�ectively apply the E�cientNet models to
DeepFake detection, the author’s made a few key ad-
justments. In particular, Bonettini et al. made use of (i)
attention layers and (ii) a siamese training strategy to
deploy a system that most e�ectively and e�ciently
identi�es DeepFake videos. The following sections ex-
plore these custom modi�cations in detail and suggest
why the Bonettini et al. system is able to so accurately
and convincingly identify fake media content.

1.2.1 Attention LayersThe bene�ts of attention lay-
ers in a convolutional neural network are twofold: First,
attention layers allow the network to learn what re-
gions of the input’s feature maps are most important
to analyze when performing classi�cation; second, at-
tention layers shed light on the network’s thinking,
allowing network operators to understand what parts
of an image are most informative to a convolutional
neural network. Such a step towards explainability is
helpful not only for image forensics but for the �eld
of deep learning as a whole, as modern deep learning
models are often interpreted as "black boxes" where the
speci�c origin of results is di�cult to derive.

1.2.2 Siamese TrainingDuring model training, a
face is extracted from an input video frame and consid-
ered for DeepFake classi�cation. Using facial features
as the primary indicator of fake media content – as
generated features have been shown to typically reside
around the face – the model attempts to learn which
features correspond to a generated video and which fea-
tures correspond to original content. To assist with the
learning process, the model is trained using a siamese
training strategy, where additional information about
the data is extrapolated and more generalizabilities are
uncovered. Ultimately, the model learns the broadest
representations of facial features to most accurately
identify altered media content, categorizing images as
either real or fake.

2 Evaluation
To evaluate the DeepFake detection system proposed
by Bonettini et al., I trained the network on my own

collection of original and DeepFake videos, analyzing
the predictions output by the network to measure the
model’s success in distinguishing between real and fake
videos. Results from the network are output on a frame
by frame basis, where each frame of an input video is
assigned a score ranging from 0 to 1, with a score of 0
indicating "real content" and 1 indicating "fake content."
Video prediction scores are then derived by averaging
the scores of all frames in a video.
In each of my experiments, the network was able

to accurately determine which of my videos was ma-
nipulated and which was legitimate. However, certain
properties of a video played a large role in determining
the con�dence of the model’s prediction. The following
subsections – organized by the claims set forth in the
paper – provide a critical analysis of the author’s Deep-
Fake detection system and demonstrate which video
properties are most in�uential when trying to identify
fake media content.

Claim #1: Network fusion helps both the accuracy of
the DeepFake detection and the quality of the detection.

The group of convolutional neural networks ensem-
bled by Bonettini et al. did indeed produce accurate
results. In fact, for each one of my experiments, the Ef-
�cientNet models were able to correctly predict which
video was an original and which was a fake. As Figure
1 demonstrates, such an accomplishment is no easy
task, as both the real and fake videos analyzed by the
model appear to be legitimate to the naked eye.

Claim #2: During training and validation, to make
our models more robust, we perform data augmenta-
tion operations (downscaling, horizontal �ipping, noise
addition, etc.) on the input faces.

To measure the robustness of the authors’ model, I
performed a series of data augmentation operations on
my own DeepFake videos before inputting them into
the model. As Figure 2 illustrates, I tested the network
on videos that had been downscaled, rotated, posed
and blurred. Interestingly, the model most con�dently
predicted fraud on videos that had been blurred with
a gaussian noise �lter. Figure 3 indicates which data
augmentation operations were the most impactful,
where, in the end, no augmented videos were able to
score lower than unaltered content.

Claim #3: Roughly modeled eyes and teeth, showing
excessively white regions, are the main trademarks of
DeepFake generation methods.
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Figure 1. Example of a real video and fake video input into the network ensemble for classi�cation.

Figure 2. Videos were altered with various data augmentation techniques to test the robustness of the
classi�cation system. From the left: Downscale, Rotation, Closed Eyes & Mouth, Gaussian Blur

Figure 3. DeepFake detection scores for fake, augmented videos. A score close to 0 predicts REAL,
while a score close to 1 predicts FAKE. In my experiments, real videos scored in the 0 – 0.05 range.

Figure 4. Videos augmented with random noise (right) were considered to be more fraudulent than
videos that hid facial features (left).
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In order to test this claim I generated a DeepFake video
where the character in the video hid his teeth and eyes.
While the network was able to correctly categorize
the video as fake, it considered the video to be more
real than other fake video counterparts. Fake videos
augmented with gaussian blur, for instance, were con-
sidered to be more fraudulent than fake videos not

showing teeth or eyes. Figure 4 demonstrates this ef-
fect and suggests what data augmentation operations
future works should take into account when develop-
ing image forensic systems.
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