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ABSTRACT

The most effective virtual assistants help users perform tasks within
and beyond their skill set. Any domain specific knowledge held
by the assistant is transferred to the user in the form of intuitive,
timely advice. Ultimately, feedback from the assistant is both helpful
and nonintrusive. In the following research project, we investigate
the effectiveness of baseline action recognition models in enabling
non-intrusive task guidance. Through offline and real-time video
analysis, we demonstrate knowledge transfer between assistant
and user by way of our augmented reality application, The AR
Cooking Helper. Using contemporary action recognition models
trained on the EPIC-KITCHENS dataset, we walk a user through a
recipe, issuing real-time guidance when necessary. Additionally, to
best inform the virtual assistant, we explore techniques in image
tracking and gaze interaction to properly infer user actions and
most effectively deliver perceptually-enabled task guidance.
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1 INTRODUCTION

Virtual assistants have become more and more ubiquitous as ma-
chine learning algorithms have become smarter and computer hard-
ware more powerful. Currently, the most well known virtual as-
sistants rely primarily on audio input to receive commands before
transmitting results. Requests are received sequentially and guid-
ance is issued successively, either in the form of audio or visual
feedback. In order to be most helpful, however, the ideal virtual as-
sistant would issue on-demand advice based on auditory and visual
cues, providing assistance when necessary and remaining silent
otherwise. The ultimate goal, as set forth by Draper et al., is a virtual
assistant that "sees what you see, hears what you hear, knows your
tasks, and knows you. It answers your questions, warns you if you
make a mistake, and walks you through unfamiliar procedures” [1].
The ideal virtual assistant is competent and perceptive, providing
guidance only when it is capable of transferring knowledge without
diminishing user performance.

In addition to perceptive and intuitive, the ideal virtual assistant
is capable of delivering guidance through a variety of different
methods. Besides providing just-in-time audio feedback, advice
may be given by way of instructive visual cues. Checklists, illus-
trated instructions and instructional videos may all be useful in
transferring domain knowledge. However, with the prevalence and
advancement of modern augmented reality technologies and com-
puter vision algorithms, visual instructions may be enhanced even
further. For instance, instructions may be overlaid onto a user’s
field of view with the help of an augmented reality headset, placed
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Figure 1: The EPIC-KITCHENS Dataset.

in relation to the user’s environment so that guidance may be in-
terpreted as clearly as possible. Instructions may also be personally
calibrated to the user, where advice is given according to how a
machine learning model interprets a user’s needs and aptitude.
Indeed, the ultimate virtual assistant is one that can accurately
judge a user’s performance and in turn deliver guidance in the most
effective way possible.

In order to most successfully perform task guidance, a virtual as-
sistant requires domain knowledge specific to the task at hand. Such
knowledge can be established with traditional heuristics, where a
virtual assistant is hard coded with prior task knowledge in the form
of computer-interpretable task graphs and conditional algorithms.
However, to scale most effectively and develop into a true, natural
counterpart, the ideal virtual assistant needs to gain knowledge by
way of parsing and understanding multi-media instructions. Simi-
lar to how many people today prepare for a new task by watching
instructional videos, the ideal virtual assistant is capable of gaining
knowledge from video and relaying that knowledge in the form of
intuitive, non-intrusive advice. By parsing, interpreting and truly
learning from multi-media content, a virtual assistant may one day
become the perfect sidekick.

2 OVERVIEW

In an effort to assess contemporary technologies in enabling knowl-
edge transfer and perceptually-enabled task guidance, a baseline
action recognition model trained on a large egocentric dataset is
applied in the context of recipe guidance in the kitchen. Specif-
ically, a baseline Temporal Segment Network [3] trained on the
substantial EPIC-KITCHENS dataset [2] is deployed to interpret
video instructions and deliver recipe guidance. The network is de-
ployed and evaluated in both offline and real-time scenarios, where
offline knowledge gain is used to guide real-time instruction. The
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Figure 2: Temporal Segment Network: A video is first split into segments and then snippets before being input into
a series of spatial and temporal ConvNets. Predictions from each ConvNet are then fused together by a Segmental
Consensus Function to arrive at a final video-level output prediction.

following subsections provide more detail on the overall approach,
beginning with an overview of the EPIC-KITCHENS dataset and
its role in promoting an accurate and intelligent action recognition
system.

2.1 Dataset

The EPIC-KITCHENS dataset, as illustrated in Figure 1, is com-
posed of a large variety of participants interacting in their own
kitchen environments. Recorded from the first-person point of view
by way of a head mounted GoPro camera, the EPIC-KITCHENS
dataset spans 45 kitchens, includes over 100 hours of recording
(upwards of 20 million frames) and approximately 90,000 action
segments. Recording takes place across 4 cities throughout North
America and Europe, offering a collection of highly diverse kitchen
interactions and cooking styles. As pointed out by the authors,
the EPIC-KITCHENS dataset is "the largest dataset in first-person
(egocentric) vision" [2].

During 2020 and 2021, the authors of the EPIC-KITCHENS dataset
hosted a series of challenges centered around machine learning
and action understanding. Specifically, the EPIC-KITCHENS Chal-
lenges seek to identify the most accurate machine learning mod-
els in the context of action-recognition, action-anticipation and
object-detection. Certifications are awarded to the most accurate
classification systems and results are published online. As a start-
ing point, the authors provide a series of baseline neural networks
that have been trained on the EPIC-KITCHENS dataset to per-
form action-recognition. These models were chosen as they demon-
strated promising action-recognition performance in the past [2].
One especially promising model is the TSN, or Temporal Segment
Network, as introduced by Wang et al. [3].

2.2 Temporal Segment Network

The Temporal Segment Network (TSN) is a novel framework de-
veloped by Wang et al. for video-based action recognition. Built
upon the idea of long-range temporal structure modeling, the TSN
framework avoids many of the common pitfalls mainstream Con-
vNet frameworks encounter when performing action recognition.
As pointed out by Wang et al., popular ConvNet frameworks often-
times rely on appearances and short-term motions, thus lacking

the ability to either incorporate long-term temporal structure or
sufficiently understand a sequence of frames [3]. To avoid such
short-term analysis, Wang et al. propose a network based on a
sparse temporal sampling strategy, where a sparse sampling scheme
extracts a diverse array of frames instead of the largely redundant
frames acquired when performing dense temporal sampling. With
a sparse sampling strategy and very deep ConvNet architecture,
Wang et al. introduce a network that is capable of capturing relevant
information and performing accurate action recognition.

In terms of architecture, the Temporal Segment Network is com-
posed of spatial stream ConvNets and temporal stream ConvNets.
Instead of operating on single frames or frame stacks — as is typical
of spatial and temporal networks, respectfully — a Temporal Seg-
ment Network operates on a sequence of short snippets sparsely
sampled from the segments of a video [3]. First considering the
snippets independently, the network produces a preliminary pre-
diction for each snippet. Then, in order to arrive at a consensus, the
network groups all predictions in a Segmental Consensus Function
and outputs a final video-level prediction. Figure 2 illustrates the
architecture of a Temporal Segment Network, where a video is first
split into segments and then snippets before being classified as an
action.

2.3 Video Analysis

Offline and real-time video analysis was conducted in order to de-
termine if a baseline Temporal Segment Network trained on the
EPIC-KITCHENS dataset is capable of promoting either knowl-
edge transfer or perceptually-enabled task guidance. In terms of
offline analysis, instructional videos are input into the Temporal
Segment Network and subdivided into individual clips according to
the actions predicted by the model. The predicted action clips are
subsequently added to the AR Cooking Helper application, where
they serve to transfer task knowledge by way of video instruction.
In regards to real-time analysis, a trained TSN model is deployed
with the AR Cooking Helper application to predict a user’s actions
at runtime. The model’s predictions are then used to determine
the viability of using a Temporal Segment Network to advance
perceptually-enabled task guidance.
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(a) Object Recognition - Ingredient and Recipe Recommendations:
Upon recognizing tracked kitchen items, the AR Cooking Helper issues
recipe recommendations (top right drop-down menu) and ingredient

recommendations (middle left yellow panel).
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(b) Knowledge Transfer — Video Tutorials: Users may utilize a virtual

video player to cycle through the steps of a recipe. Displayed recipe

steps are chosen during offline video analysis and the corresponding
instructions are shown on the bottom of the screen.

Figure 3: The AR Cooking Helper utilizes object recognition, textual recommendations, plane tracking and video tutorials to perform
task guidance and knowledge transfer.

2.3.1 Offline Video Analysis. Offline instructional videos analyzed
by the Temporal Segment Network are split into consecutive, four
second long segments. Eight snippets are extracted from each seg-
ment, corresponding to a snippet extracted for every 0.5 seconds of
segment time. Once gathered, snippets are input into the Temporal
Segment Network, where the model classifies the video segment as
an action based on a verb, noun prediction. Segment predictions
are ultimately used to determine which clips of the instructional
video are most helpful in facilitating knowledge transfer in the AR
Cooking Helper application.

2.3.2  Real-Time Video Analysis. During real-time video analysis,
image frames are gathered at runtime and action predictions are dis-
played on screen. Once eight consecutive image frames are collected
— where every accessed frame is interspaced by 30 non-accessed
frames — the frames are input into a trained Temporal Segment
Network as a single video segment. Results output by the model
are then used to evaluate model accuracy, infer a user’s actions and
determine how best to deliver perceptually-enabled task guidance.

3 IMPLEMENTATION

The AR Cooking Helper application is implemented on a 7th gen-
eration iPad using the Unity game engine [9] and a handful of
key augmented reality frameworks. Specifically, to manage aug-
mented reality within the application, the AR Cooking Helper relies
on Unity’s AR Foundation library [10]. AR Foundation is instru-
mental in supporting the augmented reality tasks plane tracking,
anchoring and model placement as well as image tracking and ray
casting. Action recognition, on the other hand, is performed by ana-
lyzing the device’s camera image on the CPU, an image obtained by
way of Unity’s AR Subsystems library [11]. Once acquired, camera
images are collected and then normalized within the application.
Upon collecting eight successive camera images, the frames are

grouped together in a tensor and input into an Open Neural Net-
work Exchange (ONNX) version of a Temporal Segment Network
trained on the EPIC-KITCHENS dataset. Model inference is then
performed using Unity’s Barracuda inference library [12], with
results collected and displayed in the application’s Model Results

pop-up panel.

3.1 Task Guidance

Augmented reality has proven to be a very effective tool in facilitat-
ing task guidance in the kitchen [4-8]. In The AR Cooking Helper,
task guidance is accomplished though a combination of augmented
reality, object recognition, textual recommendations, plane tracking
and video demonstration. The following subsections reveal how The
AR Cooking Helper makes use of the user’s world space to deliver
task guidance and cultivate knowledge transfer.

3.1.1 Recommendations. The AR Cooking Helper relies on AR Foun-
dation’s Image Tracking Library to perform object recognition and
deliver suitable recipe recommendations. Serving as a repository
of recognized kitchen items, the Image Tracking Library detects
ingredients in view at runtime and determines the type and timing
of task recommendations. Upon detecting the ingredients stock
pot and pasta, for example, the AR Cooking Helper provides a new
recipe recommendation (spaghetti) and a list of recommended in-
gredients (salt, butter, etc.). Ingredient suggestions are then updated
in real-time as new items are recognized by the Image Tracking
Library. Figure 3a provides an illustration of the AR Cooking Helper
issuing ingredient and recipe recommendations after the system
has recognized the items pasta, butter and stock pot.

3.1.2  Video Demonstration. To walk a user through a recipe, the AR
Cooking Helper provides the set of instructional video clips prepared
during offline video analysis. All video clips are played through
the application’s video player, or a two dimensional plane that is
virtually rendered in the user’s world space. The user may place the
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(a) Virtual Models — Object Tracking: Virtual models are rendered on
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by the AR Cookin Helper. Here, a virtual noodle is spawned on top of
the tracked object pasta.
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(b) Virtual Models — Item Templates: Virtual models provide the user
with points of comparison when cooking. Virtual meatballs are
included in the Spaghetti recipe to assist the user in making
consistently sized meatballs.

Figure 4: Virtual models in the AR Cooking Helper provide both helpful feedback and instructive points of comparison.
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(a) Recognizing the item wooden spoon before the item salt suggests
the user performed the action Mix Pasta before Add Salt.
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(b) Recognizing the item tongs before the item butter lid suggests the
user performed the action Serve Pasta before Add Butter.

Figure 5: The AR Cooking Helper keeps track of what objects are recognized when to infer the user’s progress in a recipe. When a
future object is recognized before an anticipated object, the application assumes recipe steps have been performed out of order and
issues a corrective warning in the bottom left corner of the screen.

video player on either vertical or horizontal surfaces, so long as the
surface is recognized by AR Foundation’s AR Plane Manager. Once
placed upon a valid plane, the user may cycle through the steps
of the recipe, where the instructions corresponding to each recipe
step are displayed on the bottom of the screen. Figure 3b provides
an example of the instructional video player and the instructions
associated with the selected recipe step.

3.1.3  Virtual Models. Virtual models are used extensively in the
AR Cooking Helper to provide both helpful feedback and virtual
points of comparison. When the Image Tracking Library identifies
a tracked object, for example, a virtual model is rendered above the
kitchen item to clearly indicate that the system has successfully
performed object recognition. When a user is working through

a recipe, virtual items are also dispensed with proper user input;
virtual meatballs associated with the Spaghetti recipe, for exam-
ple, are scaled and spawned in the user’s world space when the
user employs touch gestures on top of a tracked plane. Figure 4
demonstrates virtual model placement, where a virtual noodle is
rendered on top of the tracked object pasta and virtual meatballs are
rendered on a countertop to provide the user with a size template
when cooking spaghetti.

3.2 Mistake Recognition

In addition to employing the Image Tracking Library for object
recognition, the AR Cooking Helper utilizes tracked images to dis-
cern user action. By keeping track of what objects are identified
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(a) A virtual salt shaker is rendered above the video player when the
user gazes at the video player during the Add Salt step.
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(b) A virtual wooden spoon animates above the video player when
the user gazes at the video player during the Mix Pasta step.

Figure 6: The AR Cooking Helper renders virtual kitchen items associated with the current recipe step when the user gazes at the
video player. Virtual items provide additional task context should the user struggle with the video player instructions.
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(a) Accurate action prediction output by the TSN when analyzing an
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(b) Accurate action prediction output by the TSN when analyzing an
offline video recorded in my apartment kitchen.

Figure 7: A Temporal Segment Network was evaluated using offline videos acquired from the EPIC-KITCHENS dataset and my own
home recordings. Action predictions are made for every segment of a video and then added back to the video as subtitles.

when, the AR Cooking Helper is able to infer a user’s progress in
a recipe. Noticing the item wooden spoon before the item salt, for
example, suggests the user has performed the action Mix Pasta
before Add Salt. Likewise, recognizing the item tongs before the
item butter lid indicates that the user skipped the step Add Butter
before performing Serve Pasta. When mistakes are recognized, the
AR Cooking Helper issues a helpful warning, allowing the user to
stay on track with the steps of the recipe. Figure 5 illustrates the
warnings issued by the AR Cooking Helper when the application
realizes the user has performed the steps of the Spaghetti recipe
out of order.

3.3 Gaze Interaction

Besides using object recognition to infer user action, the AR Cooking
Helper also incorporates gaze interaction to deduce a user’s actions

and task performance. If a user is stuck on a certain recipe step,
for instance, it is assumed that they will linger in front of the
instructional video player, continually replaying the step’s video
instructions in order to fully understand the task at hand. Upon
recognizing the user’s gaze, the AR Cooking Helper will render a
virtual model associated with the recipe step, using the opportunity
to further clarify the recipe’s instructions and highlight key items.
To most effectively deliver the supplementary guidance, the virtual
kitchen item is rendered on top of the video player, where it repeats
a simple animation in an attempt to catch the user’s attention and
convey additional information. Figure 6 provides an example of
how the AR Cooking Helper uses gaze interaction to infer a user’s
task performance and deliver supplementary task guidance.
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(a) Real-Time Video Analysis — Cleaning: The TSN output illogical
action predictions when analyzing the task clean cup.

David Weinflash, Misha Sra, and Tobias Hollerer

Cooking Helper

Start Timer

(b) Real-Time Video Analysis — Cooking: The TSN output inaccurate
action predictions when analyzing the Spaghetti recipe step Add Salt.

Figure 8: Real-time action recognition is performed within the AR Cooking Helper by utilizing a trained Temporal Segment Network
formatted in the ONNX file standard. Actions are analyzed every four seconds and displayed within the application’s pop-up panel.

4 EVALUATION

In order to determine the practicality of relying on a Temporal Seg-
ment Network to achieve perceptually-enabled task guidance and
knowledge transfer, a series of experiments were conducted in both
offline and real-time environments. To measure the generalizability
of the model, the network is input an array of video segments from
the EPIC-KITCHENS dataset as well as video segments recorded
in my own home kitchen. The following subsections examine the
model’s performance in a variety of settings and indicate whether
or not a Temporal Segment Network is well suited to support the
ideal virtual assistant.

4.1 Offline Video Analysis

The Temporal Segment Network performed surprisingly well when
analyzing offline videos acquired from either the EPIC-KITCHENS
dataset or my own home video collection. In both environments,
the trained model output logical verb, noun predictions for each
action segment of the video. Interestingly, the model was more
accurate when classifying cleaning tasks rather than cooking tasks,
an admittedly disappointing finding considering the model’s ap-
plication in the AR Cooking Helper. Nevertheless, the Temporal
Segment Network performed well enough in an offline setting to
justify further analysis of the network in a real-time setting. Figure
7 gives an example of the model’s performance when predicting the
egocentric kitchen interactions found in either an EPIC-KITCHENS
video or my own home video.

4.2 Real-Time Video Analysis

Unlike during offline analysis, the Temporal Segment Network
performed poorly when attempting to classify actions in a real-time
setting. Analyzing kitchen interactions that included both cooking
and cleaning, the model consistently output illogical predictions
that did not match the user’s current task. Taking into account the
differences between offline and real-time analysis, the Temporal
Segment Network may perform poorly when deployed within the

AR Cooking Helper due to the Barracuda library requirement that
the model be formatted in the ONNX file standard. Whatever the
cause, the real-time experiments clearly indicate that a significant
amount of model improvement is necessary to accurately inform the
virtual assistant and advance perceptually-enabled task guidance.
Figure 8 demonstrates the inaccurate action predictions made by
the model when analyzing both cooking and cleaning tasks in my
home kitchen.

4.3 Model Analysis

A series of experiments were conducted in an effort to explain why
the Temporal Segment Network performs poorly in a real-time
setting yet accurately in an offline setting. Specifically, the model
was evaluated in real-time using a combination of normalization
techniques and inference engines, where the best combination
would ideally produce accurate action predictions similar to those
produced during offline analysis.

As pointed out by the authors of the Barracuda inference library,
model performance may vary depending on which core engine is
used to execute the network; a CSharpBurst backend may perform
inference the fastest but may not deliver as accurate results as the
more stable CSharpRef backend [12]. Data normalization may also
play a role in model performance. To measure the effect of data
normalization, the pixel values of each video frame are normalized
according to either a Standard strategy (each color channel is nor-
malized to have a standard deviation of 1 and a mean of 0) or a
TSN strategy (each color channel is normalized based on the values
used by the TSN authors during normalization). Table 1 provides a
break down of the different combinations used when evaluating the
Temporal Segment Network in real-time, where no combination
produced accurate action predictions like those produced during
offline analysis.
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H Core Engine  Normalization H

CSharpRef Standard

CSharp Standard

CSharpBurst Standard
CSharpRef TSN
CSharp TSN
CSharpBurst TSN

Table 1: Real-Time Analysis — Evaluating real-time
model performance using a variety of inference engines
and normalization strategies. No combination produced

accurate action predictions like those output during

offline analysis (Core Engine: CSharpRef,
Normalization: TSN).

5 FUTURE WORK

As mentioned above, more work needs to be done on the Tem-
poral Segment Network to produce a more accurate and adaptive
model. Indeed, in order to properly support a virtual assistant, an
action recognition model must be able to accurately analyze both
offline instructional videos and real-time user actions. Iterative ex-
periments evaluating model performance under a variety of video
segmentation strategies may yield more accurate results. Addition-
ally, fine-tuning the model’s consensus function may lead to logical
action predictions more closely aligned with the user’s actions in
the kitchen. Whatever the approach, a virtual assistant needs to
be able to rely on an accurate action recognition model in order to
develop into a capable and useful counterpart.

In terms of design, The AR Cooking Helper may become an even
more effective augmented reality application by incorporating a
few interface adjustments. For one, user studies revealed that the
application’s drop-down menus and panels were inconspicuous;
rather than relying on menu animations and textual cues to capture
user attention, feedback should be delivered primarily by virtual
models placed clearly in the user’s world space. Additional auditory
cues would also benefit the application, providing the user with
a more instructive and engaging experience. Finally, to make for
the best cooking experience, The AR Cooking Helper should be
implemented on a hands-free device - such as a Microsoft HoloLens
or Oculus headset — thereby allowing the user to simultaneously
cook with both hands and receive non-intrusive task guidance while
in the kitchen.

6 CONCLUSION

In this research project, a Temporal Segment Network trained on
the EPIC-KITCHENS dataset was deployed in an augmented reality
application to assess the effectiveness of a baseline action recogni-
tion model in promoting perceptually-enabled task guidance and
knowledge transfer. By investigating model performance in offline
and real-time settings — as well as exploring techniques in image
tracking and gaze interaction — the project shed light on the most
promising approaches to take when striving to infer egocentric
user action and develop the ideal virtual assistant.
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