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ABSTRACT
With over 80% of global IP traffic attributed to video [5], mea-
suring quality of experience (QoE) across streaming services
becomes imperative for service providers. However, such
evaluations are often difficult on mobile broadband, particu-
larly due to the inherent wireless characteristics associated
with cellular networks. Investigating quality of experience
usually involves implementing complex systems to capture
usability at the end-user device level. This is both resource
and time intensive. In this study, we provide the first look
into QoE prediction on mobile broadband using commonly
reported metrics such as signal strength and throughput mea-
surements. To validate our idea we collect a comprehensive
dataset that contains ground truth measurements from over
sixteen locations across the continental United States. Us-
ing several state-of-the-art machine learning algorithms we
show that it is possible to predict quality of experience with
an accuracy of 87%, while minimizing computing resources.
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1 INTRODUCTION
Quality of Experience (QoE) has become an increasingly im-
portant measurement as service providers aim to maximize
each individual customers’ experiences in order to grow their
business. As a result, identifying the key factors that influ-
ence user experience has become an increasingly important
task. In this study, we focus on exploring the link between
key radio measurements and user experience in the context
of video streaming sessions. In order to quantify network per-
formance, we introduce Edain, a comprehensive monitoring
suite to accurately ascertain network level and application
level measurements. We deploy Edain in a diverse array of
environments to collect ground truth networkmeasurements
from sixteen different locations across the United States. Fi-
nally, in order to accurately predict user experience from
radio and network level measurements, we utilize a compre-
hensive array of machine learning algorithms ranging from
Random Forest and ARIMA to popular neural network mod-
els such as recurrent neural networks in order to predict user
experience on video streaming services. The novelty in our
approach can be attributed to the easily-accessible metrics
used (RSRP, auto reported on the device and throughput, that
can be gathered through popular speed checker applications)
for prediction of quality of experience (QoE).

2 BACKGROUND
Quality of Experience (QoE) is an increasingly important
metric for today’s modern service providers. Discovering
and optimizing the factors that determine user experience
has thus become an essential goal for network operators. As
a result, we focus on exploring the link between key radio
measurements and user experience in the context of video
streaming sessions.

2.1 LTE Coverage and Usability

RSRP: Reference signal received power (RSRP), is defined
as the linear average over the power contributions (in Watts)
of the resource elements that carry cell-specific reference
signals within the considered measurement frequency band-
width. Theoretically, it varies between -44dBm to -140dBm,
with -44dBm indicating the best quality signal strength. Esti-
mation of received signal strength plays a vital role in many
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control plane operations, including inter- and intra- eNodeB
handovers [4, 7, 14, 15, 17]. Precise detection of RSRP plays
a crucial role in these handovers, as well as several diagnos-
tic methods in LTE networks. For instance, Anas et al. [3]
evaluate the performance of RSRP handovers in LTE. They
observe that a handover margin of 2dB to 6dB (RSRP) leads
to an optimal number of handovers without sacrificing much
of uplink SINR (for a specific range of user velocity). The
effect of RSRP measurement bandwidth on the accuracy of
handovers is studied in [13, 14]. From a telecom provider’s
perspective, this suggests a need for up-to-date, accurate
RSRP space-maps for improving service quality.
Several prior works examine the relationships between

RSRP and SINR [1, 11, 12, 21], but little work explores the cor-
relation between RSRP and usability at the user end. While
the FCC publishes LTE coverage maps for the United States
using RSRP measurements reported by the telecoms [8], tar-
geted studies about the quality of experience as a function
of radio measurements remain unexplored.

2.2 Quality of Experience
Quality of Experience (QoE) has received much attention
over the past years and has become a prominent issue for
delivering services and applications. A significant amount
of research has been devoted to understanding, measuring,
and modelling QoE for a variety of media services. Moreover,
with many different offered to the emerging consumer base,
identifying the root causes of QoE impairments and finding
effective solutions for meeting the end users’ requirements
and expectations in terms of service quality is a challenging
and complex problem. Thus, we turn our focus to on-demand
video streaming in order to examine the change in user ex-
perience under varying network conditions.
In this study, we investigate the effect of radio measure-

ments such as RSRP and QoS metrics such as throughput on
quality of experience metrics, in particular buffer size during
video streaming sessions.

3 EDAIN: NETWORK MONITORING
SUITE

We develop Edain, a comprehensive network monitoring
suite, to quantify network performance. Edain provides an
extensive set of features to measure QoS and QoE metrics at
the client. At the time of writing, Edain has been used in over
sixteen locations across the United States to compare the
performance of mobile broadband under varying network
conditions.

3.1 Implementation
Edain’s functionality ranges from computing network level
(throughput, latency and packet traces) to application level

(on-demand video streaming (YouTube)) and page load time
measurements. We measure cellular performance by tether-
ing the phones with the laptops running Edain. We ensure
that the cellular plans on all our devices have unlimited data
and hot-spot enabled to effectively achieve the same level of
performance as we would on the mobile device. Edain was
developed for Linux, keeping ease of deployment in mind.
Edain is agnostic to network type and provides the flexibil-
ity to deploy it on either wired, Wi-Fi or cellular environ-
ments. Development of an integrated smartphone app was
impractical as the level of unification achieved for various
application-level measurements (YouTube, Skype, etc.) was
simply not possible on smartphone operating systems, given
the walled access to iOS ecosystem and recent restrictions
introduced in Android APIs [2, 22].

Latency: Edain’s rtt_out function automates the collection
of round-trip times by initiating pings through Hping3 [26]
to a server hosted on an AWS instance (Virginia). We config-
ure Hping3 to use TCP packets instead of ICMP. The ping
duration is capped at 120 seconds with one-second intervals
between each ping. Edain computes the average latency us-
ing two different sessions - one before the throughput tests
(described below) and one after. This captures the vagaries
introduced during a long throughput measurement session
that may or may not prompt a cellular provider to tune the
level of service provided soon-after [16]. We observe an av-
erage round-trip time of 61ms with a standard deviation of
±3 ms.

Throughput: To calculate the achieved throughput Edain
initiates iPerf threads to download a specified file from the
same AWS instance as the latency test. The measurement
is repeated 10 times and results are saved at the client side.
Further, Edain logs the packet traces at the client throughout
the iPerf tests in order to compute second-order metrics such
as packet loss.

Page Load Time: Load times are initiated through the
plt_stream function. Edain automates the loading of Web
pages using Selenium [24]. For our measurements, we use
the Tranco Top 25 list [23]. To evaluate load times. Edain
logs the navigation timings of a Web page starting from
𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑟𝑡 through the 𝑙𝑜𝑎𝑑𝐸𝑣𝑒𝑛𝑡𝐸𝑛𝑑 event [27]. These
instances of event timings help in a finer grain analysis of
page load times. We set Edain to run plt_stream three times
for better estimation of load times. Browser cache is auto-
matically wiped out after each Web page load to reflect true
load time for the next iteration.

Video Streaming: YouTube: Examination of QoE metrics
from on-demand video streaming services is a challenging
problem, particularly because of encrypted traffic, as demon-
strated by prior work [10, 19, 20, 25]. Since three-quarters of
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global IP traffic is dominated by video, user experience for
streaming services then becomes critical on mobile broad-
band. We built the 𝑣𝑖𝑑𝑒𝑜_𝑠𝑡𝑟𝑒𝑎𝑚 function into Edain that
enables logging QoE metrics from YouTube videos. Our de-
sign is inspired from eMIMIC testbed [19]. It uses passive
network measurements to estimate key video QoE metrics
for encrypted HTTP-based Adaptive Streaming (HAS) ses-
sions. Using packet headers from network traffic to model a
HAS session, video QoE metrics are estimated, such as start-
up latency, achieved resolution and buffer size. The function
logs samples at one-second resolution. To ensure uniformity
across all our datasets, we play a 180-second video in loop
for three runs, for every location and cellular operator. Video
resolution preference is set to auto so that the client takes
care of any required resolution switches, which is indicative
of the network conditions.

4 DATASET
To test our proposed study, we perform a targeted measure-
ment campaign to collect network performance measure-
ments from sixteen different locations across the United
States. These include eight datasets from the state of New
Mexico, six from San Diego, CA and two from the city of
San Francisco, gathering measurements from four major
telecom operators in the US: AT&T, Sprint, T-Mobile and
Verizon. We cover a cumulative distance of over 200 miles
in New Mexico over a period of five days beginning May 28,
2019. Table 1 shows the locations of ground measurements
and their descriptive labels we use for this analysis. On our
campaign, we cover two American Indian reservations near
Santa Fe: Santa Clara and Ohkay Owingeh Pueblos. In both
the Pueblos, tribal leadership permitted us to collect addi-
tional measurements in residential zones. We select these
areas of New Mexico for their mix of tribal and non-tribal
demographics; tribal lands tend to have the highest coverage
over-statements and the most limited cellular availability
within the United States [6, 9]. Additional locations in New
Mexico include a weave of non-tribal rural, semi-urban and
micropolitan regions. Finally, we collect datasets from San
Diego and San Francisco to capture network performance
in a more urban, metropolitan setting. We also gather cel-
lular performance under varying network conditions such
as during heavy congestion and times of under-utilization
(when no network overload is likely to occur). These ground
measurements provide an important comparison point for
actual coverage and user experience particularly since, com-
bined, they are representative of a wide spectrum of network
availability and usability.

In our measurement campaign, we record signal strength
readings from four Motorola G7 Power (XT1955-5) phones,
each running Android Pie (9.0.0). We collect measurements

Table 1: Summary of dataset locations
Location County State Cluster Remarks

SC_A01 Rio Arriba New Mexico Tribal, Rural –
SC_B01 Rio Arriba New Mexico Tribal, Rural –
SC_B02 Rio Arriba New Mexico Tribal, Rural –
SC_C01 Rio Arriba New Mexico Semi-Urban –
SC_C02 Rio Arriba New Mexico Tribal, Rural –
OO_D01 Rio Arriba New Mexico Tribal, Rural –
AR_D02 Rio Arriba New Mexico Non-Tribal, Rural –
SF_D03 Santa Fe New Mexico Non-Tribal, Rural –

ADM San Diego California Urban Congested
ADM Base San Diego California Urban –
CWF San Diego California Urban Congested
CWF Base San Diego California Urban –
FMR San Diego California Urban Congested
FMR Base San Diego California Urban –

AIS San Francisco California Urban Congested
AIS Base San Francisco California Urban –

using the Network Monitor application [18]. An external
GlobalSat BU-353-S4 GPS connected to an Ubuntu Lenovo
ThinkPad laptop gathered geolocation measurements, which
we matched to the appropriate ground measurement by
timestamp. We outfitted each phone with a SIM card from
one of the four top cellular providers in the region: Verizon,
T-Mobile, AT&T, and Sprint. The phones recorded signal
strength every second through the areas of study.

5 EVALUATION
5.1 Analyzing the dataset
To collect cellular performance data, we instantiate two de-
vices operating on same provider. We run YouTube and RSRP
capture tests on one of the device while concurrently gath-
ering throughput data on the other. YouTube tests compiles
QoE metrics such as achieved video quality, playback mode
(playing or buffering) and buffer size at one-second granu-
larity. Throughput tests run on a separate device in order
to mitigate any interference that might arise from active
monitoring while running YouTube tests on the same device.
RSRP tests do not introduce any interference while running
Edain. For throughput tests, we fill up the pipeline by ini-
tiating iPerf test for a file size of 500 MB, which is usually
takes longer than Edain to complete YouTube measurements.
Our curating and pre-processing, our dataset consists of over
24,000 individual datapoints.

In this study, we aim to to predict buffer size using RSRP
and throughput measurements for the LTE network provider.
To do so, we first explore the correlation between the RSRP
and buffer level. To do so, we analyse and plot the cross
correlation of between these two distributions. Cross corre-
lation is a measure of similarity of two series as a function
of the displacement of one relative to the other. In a time
series dataset such ours, the displacement is in time lags (one
second is one time lag). This is also known as a sliding dot
product or sliding inner-product. It is commonly used for
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Table 2: Accuracy and runtime of the models used to perform buffer size prediction.

Model Accuracy Precision Recall MAE MSE RMSE Training Time Prediction Time

Random Forest (Quantile Binning) 49% 53% 49% – – – 45.565s 1.920s
Random Forest (Uniform Binning) 87% 88% 87% – – – 44.44s 2.05s
ARIMA – – – 2.45 43.44 6.59 – –
LSTM (Quantile Binning) 78% 78% 78% – – – 92.233s 0.170s
LSTM (Uniform Binning) 80% 80% 80% – – – 76.12s 0.17s
ADA Boost 35% 21% 35% – – – 1.587s 0.135s
ADA Boost Regression – – – 3.89 25.46 5.04 0.21s 0.001s
Extra Randomized Tree 76% 76% 76% – – – 0.008s 0.005s
Extra Randomized Tree Regression – – – 2.64 30.92 5.56 0.022s 0.0006s
Bagging 87% 87% 87% – – – 0.603s 0.006s
Bagging Regression – – – 2.38 18.03 4.24 0.618s 0.006s
Boosting 88% 88% 88% – – – 29.14s 0.025s
Boosting Regression – – – 2.22 14.81 3.85 2.001s 0.002s
Naive Bayes 31% 18% 31% – – – 0.003s 0.002s
KNN 15% 13% 15% – – – 0.013s 0.094s
KNN Regression – – – 22.37 718.47 26.8 0.012s 0.271s
SVM 17% 5% 17% – – – 10.09s 1.383s
Decision Trees 80% 80% 80% – – – 0.104s 0.0004s
Decision Trees Regression – – – 2.59 29.99 5.47 0.102s 0.0006s

searching a long signal for a shorter, known feature. Figure 1
reveals that the highest correlation between RSRP and buffer
level is within ±5 time lags. In addition, we observe that
the system is not a perfectly dynamic system, as illustrated
by asymmetric peaks on either side of lag 0. Hence, for fur-
ther exposition of non-linear dependencies between RSRP
and buffer level, we deploy machine learning algorithms to
compute the best-fit model.

Figure 1: Cross correlation between RSRP and buffer
level.

In our analysis, we deploy a comprehensive array of ma-
chine learning algorithms, commonly referred to as an eval-
uation sweep. We examine simpler models such as Random
Forest, ARIMA, etc. as well popular neural network model
like recurrent neural network (RNN). Table 2 presents the
results we obtain after applying each of the machine learn-
ing models on the curated dataset. We achieve significant
accuracy using simpler models as opposed to complex neural
networks (for instance, RNN). Random Forest was able to
produce an accuracy of 87% as opposed to 80% in RNNs, with
much faster training times.

5.2 Random Forest
Non-parametric methods were surprisingly effective in pre-
dicting Quality of Experience from radio and network level
measurements. Specifically, our random forest model was es-
pecially effective in segmenting network level measurements
using both a quantile binning and uniform binning approach.
By making no assumptions about the functional relationship
between network measurements and Quality of Experience,
our random forest model is able to make informed and unbi-
ased predictions. What is more, by aggregating a large group
of decision trees - where each tree uses a different subset
of features - our random forest model effectively prevents
overly powerful features from influencing the model, thus
de-correlating the ensemble of trees and allowing other fea-
tures to maintain predictive power. For our model, we use
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uniform binning of 12 timestamps consisting of 1000 esti-
mators (decision trees). RF with uniform binning produces
the best accuracy, precision and recall of 87%, 88% and 87%
respectively.

5.3 Autoregressive Integrated Moving
Average: ARIMA

Similar to recurrent neural networks, ARIMA integrates tem-
poral structures and previous observations in sequential data
sets to forecast time series data. Unlike recurrent neural net-
works, however, ARIMA provides a simple, off-the-shelf so-
lution with an intuitive design to quickly make predictions.
By constructing a linear regression model using lagged ob-
servations, ARIMA provides a statistical analysis of network
and radio level measurements and outputs predictions on
Quality of Experience in a minimal amount of time. With
a focus on short-term dependencies, ARIMA also offers a
unique perspective on our time-series data, as our recurrent
neural network LSTM model primarily focuses on long-term
dependencies. Given its usability and seamless integration,
ARIMA provides the ideal benchmark for our more complex
models and allows efficient analysis of our time series data.
Our model employs a 5-second time window that results in
a peak mean absolute error (MAE) of just over 2 seconds.
State otherwise, our model can predict the buffer size with
an average error margin of about 2 seconds.

5.4 Recurrent Neural Networks: LSTM
Given their innate ability to recognize temporal patterns in
data, recurrent neural networks are especially well suited in
our task of predicting Quality of Experience from observed
network and radio measurements. Indeed, such networks
have been implemented successfully in other similar sequen-
tial data domains, where the internal memory components of
recurrent neural networks have helped to advance the state
of the art from natural language processing to time series
prediction. Similar to other successful applications, our neu-
ral network was enhanced by following the design of a Long
Short-Term Memory (LSTM) network. By utilizing the archi-
tecture of a LSTM, long-term dependencies in the data were
successfully established, effectively avoiding the vanishing
gradient problem and allowing our model to utilize previous
patterns in the data to make future predictions. This imple-
mentation uses 3 layers of LSTM nodes followed by 2 dense
layers. Each LSTM layer is succeeded by 20% dropouts that
retain model accuracy and prevent overfitting. We notice a
total of 54,284 trainable parameters. The dataset was split
into training and test set in the ratio of 70:30. We trained the
RNN model containing 208 neurons for 200 iterations. Not
surprisingly, we obtain an appreciable accuracy, precision
and recall of 80%. The only drawback of using an RNN is the

relative increase in computing resources and longer training
times, which we emphasize may not matter in our case given
the size of dataset we operate with.

6 CONCLUSION
In this work, we take an in-depth look at predicting buffer
level from radio and throughput measurements. We first
curate our dataset to parse ground truth throughput value
for each buffer-size datapoint. These parsed dataset is then
synced across corresponding RSRP values. We perform a
detailed analysis to better understand the dependency of
buffer level in YouTube streaming with throughput and ra-
dio measurements. Finally, we apply various state-of-the-art
machine learning models to predict future buffer level given
adequate knowledge of current and previous values of RSRP
and throughput. Results show that computationally inex-
pensive models such as Random Forest and ARIMA can be
used to predict the level of remaining buffer with high ac-
curacy, precision and recall. Our study incorporates clear
comparison between aforementioned simpler models and
recurrent neural networks (RNN). We observe that simpler
models perform noticeably better than compute-intensive
LSTM networks. Our framework can be implemented to pro-
vide information about user experience by easy-to-acquire
metrics such as RSRP (auto reported by device) and through-
put (commonly used speed checker applications).
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