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Abstract
Scheduling problems have often been expressed in the form
of boolean satisfiability problems. Indeed, many classical
problems such as job shop scheduling and the nurse schedul-
ing problem have been solved with the help of a SAT solver.
In this project, I propose to utilize propositional satisfiability
and a SAT solver in the context of a practical scheduling
problem, where volunteer language interpreters are to be
matched with student-teacher conferences throughout the
Goleta and Santa Barbara school districts. In order to most
successfully solve the problem, the SAT solver utilizes a
conjunctive normal form formula that takes into account
availability, fairness, and practicality constraints to optimally
distribute interpreters amongst student-teacher conferences.
The quality of the proposed schedule is evaluated in light
of these constraints, where the optimal schedule distributes
interpreters fairly and practically so that a maximal number
of student-teacher conferences may include an interpeter.
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1 Introduction
In an effort to overcome language barriers between teachers
and parents, the Interdisciplinary Humanities Center at the
University of California, Santa Barbara matches volunteer in-
terpreters with student-teacher conferences throughout the
Goleta and Santa Barbara school districts. Student-teacher
conferences, which last 30 minutes and take place between
12 PM and 6 PM for one week during the Fall and Spring
quarters, allow teachers the opportunity to share with par-
ents the academic progress of each of their students. After
a few successful iterations, the demand for interpreters for
student-teacher conferences has increased enough to justify
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the application of a sophisticated system to solve the sched-
uling problem that arises when matching a limited number
of interpreters with an increasing number of student-teacher
conferences.
In order to model the scheduling problem, teachers from

each elementary school are asked to submit their student-
teacher conference requests for interpretation, indicating
when each meeting will occur and with which student. Next,
volunteer interpreters - composed of undergraduate and
graduate students from the University of California, Santa
Barbara - are then asked to submit their weekly availability
for interpretation and indicate whether or not they have
access to transportation. With this data collected, a sched-
ule must then be organized in such a way to ensure that
interpreters are equitably and practically matched with the
requested student-teacher conferences.

To construct an optimal schedule, the following constraints
would be taken into account when pairing interpreters with
student-teacher conferences: Availability - Interpreters are
matched with conferences according to each interpreter’s
availability calendar. Fairness - Interpreters are distributed
fairly amongst schools, ensuring that no one school is un-
fairly assigned a majority of interpreters and no one in-
terpreter is unfairly assigned a disproportional amount of
meetings. Transportation - Interpreters with access to trans-
portation are assigned to the most distant schools, limiting
unnecessary transportation costs. Convenience - Interpreters
ideally will not have to wait longer than 30 minutes between
meetings.
With all constraints accounted for, a master schedule is

then organized, divided and ultimately distributed to all
schools, teachers and interpreters. Each individual actor will
thus receive their own personal schedule for the week; that
is to say, each teacher will have their own calendar display-
ing their requested conferences and respective interpreters,
and each interpreter will have their own calendar indicating
when and where each student-teacher conference will take
place. Scheduling is considered finished once all teachers and
interpreters have confirmed the viability of their individual
calendars.
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(a) Meeting Requests: Google Sheets (b) Interpreter Availability: Google Forms

Figure 1. G Suite Applications for Data Collection

(a) Teacher Calendar: Conferences with assigned interpreters (b) Interpreter Calendar: Conferences with assigned teachers

Figure 2. G Suite Applications for Data Visualization

2 Overview
2.1 Data Collection and Data Visualization
All data collection and data visualization is accomplished
using Google’s G Suite applications. Specifically, interpreter
availability is collected using Google Forms and school meet-
ing requests are collected using Google Sheets. Once all the
necessary data is collected, schedules are organized and pre-
sented to teachers and interpreters alike via Google Sheets.
Figure 1 illustrates the templates used for data collection,
while Figure 2 illustrates the calendar templates used for data
visualization. In both cases, Google’s G Suite applications
provide an ideal environment to organize and display data,
allowing any modifications necessary to be made quickly
and effortlessly.

2.2 Data Pipeline
Once interpreter availability and teacher meeting request
data is collected, it is fed into a seperate Google Sheets appli-
cation - or the Interdisciplinary Humanities Center Sheduler
application - where it is organized and processed. In terms
of data structure, for each interpreter and each teacher, a
weekly bitmap is used to represent interpreter availability
and teacher meeting requests, respectively. Weekly calen-
dars are then arranged based on matching schedules, where
the final output schedule matches a maximal number of in-
terpreters with student-teacher conferences.
Before the integration of Google’s CP-SAT solver in the

scheduling problem, interpreters were paired with teachers
following a round-robin, draft-pick scheduling algorithm. Es-
sentially, each school was sequentially allowed their fair pick
of an interpreter who had an availability that best matched
the school’s total meeting requests. Upon assigning all inter-
preters to schools, interpreters were then distributed to teach-
ers within the school, maximizing the amount of meetings
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Figure 3. Teacher meeting requests and interpreter availability data is first collected and imported into
the Interdisciplinary Humanities Center Scheduler application. The collected data is then transformed into

weekly bitmaps and exported to the CP-SAT solver. The final schedule output from the solver is
organized and distributed to individual teacher and interpreter calendars.

paired with interpreters. With the introduction of Google’s
CP-SAT solver in the pipeline, however, the round-robin
algorithm was able to be replaced with a SAT solver and
corresponding objective function. Figure 3 provides an il-
lustration of the data pipeline and indicates where the SAT
solver fits in the process.

2.3 CP-SAT Solver
Adopted from Google’s open source software suite OR-Tools,
the CP-SAT solver utilizes an objective function to maxi-
mize the number of student-teacher conferences assigned an
interpreter. Figure 4 displays the objective function, where
interp_avails[i][d][s] * mtg_reqs[t][d][s] * shifts[(i, t, d, s)]
equals 1 when a shift s is assigned to the available inter-
preter i with teacher t on day d.

When optimizing the objective function, the CP-SAT solver
is subject to a number of formalized constraints. Primarily,
these constraints fall into the constraint categories Avail-
ability, Fairness and Practicality. These constraint categories
restrict the solver and form the primary challenges of the
scheduling problem.

• Availability - Scheduling is restricted to matching
available interpreters with requested teacher meetings.

• Fairness - Interpreters are distributed fairly amongst
schools, ensuring no one school is unfairly assigned a
majority of interpreters and no one interpreter is un-
fairly assigned a disproportionate amount of meetings.

• Practicality - Based on predefined limits, each inter-
preter works at least X meetings per week and at most
Y meetings per day.

3 Problem Formulation
3.1 Solution Space
The solution space of all combinations matching interpreters
to teacher meeting requests is non-trivially large. Indeed,
bounding the matching algorithm by an objective function
and corresponding availability constraint significantly limits
the amount of potential schedules. Consider, for instance,
the following example where a school requests 3 meetings
per day for 5 days, or 15 weekly meetings. In this example,
let there be 3 interpreters, where an interpreter is available
to work any shift during any day. In order to distribute shifts
evenly, each interpreter is assigned 5 shifts for the week. For
the first interpreter, there are

(15
5
)
, or 3,003, ways to attend

5 weekly meetings. Continuing, there are
(10
5
)
(252) and

(5
5
)

(1) remaining scheduling combinations for the second and
third interpreters, respectively. Combining all possible ar-
rangements, there are

(15
5
)
*
(10
5
)
*
(5
5
)
or 756,756 total ways of

scheduling just 3 interpreters to attend 15 weekly meetings.

3.2 Encoding
In order to find an optimal schedule, it is first necessary to
define all shifts, days, interpreters and teachers. Afterwards,
constraints are applied to the model to ensure that the final
schedule is fair, practical and convenient.
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Figure 4. An implementation example of the variables, constraints and objective function the CP-SAT
solver utilizes to create a schedule, matching volunteer interpreters with student-teacher conferences.

The final output provides various high-level statistics to help describe the final schedule.

Variables. Assume the schedule’s shifts are defined by
the set S, the days defined by set D, the interpreters by set I
and the teachers by set T. Shift variables are thus defined as
being 𝑠𝑖,𝑡,𝑑 , meaning that shift s is assigned to interpreter i
with teacher t on day d.

Constraints. To narrow down the solution space and
equitably assign interpreters to meetings, constraints are
applied to the model. In addition to limiting the number
of possible solutions, the constraints restrict and guide the
objective function.

• Each shift is assigned at most one interpreter:

∀𝑡∈𝑇 ∀𝑑∈𝐷 ∀𝑠∈𝑆
∑

𝑖∈𝐼 𝑠𝑖,𝑡,𝑑 ≤ 1
• Interpreters booked with at most one teacher at a time:

∀𝑖∈𝐼 ∀𝑑∈𝐷 ∀𝑠∈𝑆
∑

𝑡∈𝑇 𝑠𝑖,𝑡,𝑑 ≤ 1
• Interpreters work at most M shifts per day:

∀𝑖∈𝐼 ∀𝑑∈𝐷
∑

𝑡∈𝑇
∑

𝑠∈𝑆 𝑠𝑖,𝑡,𝑑 ≤ M

• Interpreters work at least F shifts per week:

∀𝑖∈𝐼
∑

𝑡∈𝑇
∑

𝑑∈𝐷
∑

𝑠∈𝑆 𝑠𝑖,𝑡,𝑑 ≥ F

• Interpreters work at most F’ shifts per week:

∀𝑖∈𝐼
∑

𝑡∈𝑇
∑

𝑑∈𝐷
∑

𝑠∈𝑆 𝑠𝑖,𝑡,𝑑 ≤ F’

• Teachers are assigned at least F interpreters per week:

∀𝑡∈𝑇
∑

𝑖∈𝐼
∑

𝑑∈𝐷
∑

𝑠∈𝑆 𝑠𝑖,𝑡,𝑑 ≥ F

• Teachers are assigned at most F’ interpreters per week:

∀𝑡∈𝑇
∑

𝑖∈𝐼
∑

𝑑∈𝐷
∑

𝑠∈𝑆 𝑠𝑖,𝑡,𝑑 ≤ F’

Fairness. As set forth in the constraints above, each inter-
preter works a fair amount of weekly shifts and each teacher
is assigned a fair amount of interpreters. In order to evenly
bound the schedules, a few restrictions and calculations are
taken into account. In particular, the minimum fair weekly
value (F ) is bound by the Practicality constraint, where each
interpreter is set to work at least X meetings per week. The
minimum fair weekly value is also restricted by an upper
bound, set as the average number of weekly shifts per inter-
preter (𝛼). The following equation describes the minimum
fair weekly value F, used to ensure that every interpreter
attends at least F weekly student-teacher conferences:

X ≤ F ≤ 𝛼

Next, a maximum fair weekly value (F’) must be estab-
lished so that no one interpreter is assigned a majority of
shifts and no one school recieves a majority of interpreters.
This maximum value is derived from the minimum fair
weekly value, where it is set to either F+1 or the amount of
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(a) Total meetings matched is largely dependent on the
number of daily meetings each interpreter is allowed to

attend. As the constraint Maximum Daily Meetings increases,
so to does the time required to generate an optimal schedule.
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(b) The number of weekly meetings assigned to each
interpreter varies based on Maximum Daily Meetings.

Interpreters are assigned a greater number of weekly meetings
as the constraint Maximum Daily Meetings increases.

Figure 5. Schedules are heavily influenced by the constraint Maximum Daily Meetings.

meetings remaining after all interpreters have been assigned
their fair share, whichever is larger. The following equation
describes the maximum fair weekly value F’, using 𝛽 to rep-
resent Total Meeting Requests and 𝜆 to represent Number of
Interpreters:

F’ = max(F+1, 𝛽 - (𝜆-1)*F )

4 Evaluation

4.1 Maximum Daily Meetings
The CP-SAT model produces a wide array of schedules when
varying the constraint Maximum Daily Meetings for each
interpreter. In each case, however, the model successfully
maximizes the amount of interpreters paired with student-
teacher conferences. Indeed, as Figure 5a demonstrates, the
model satisfies less than 99% of meeting requests only when
the Maximum Daily Meetings constraint is restricted to 1
meeting per day. When interpreters are permitted to work
greater than 1 meeting per day, the model produces a di-
verse array of schedules, as illustrated in Figure 5b. Here, the
number of weekly meetings per interpreter largely clusters
around the mean (or average number of meetings per inter-
preter), where a greater amount of permitted daily meetings

equates to a larger number of weekly meetings per inter-
preter.

4.2 Scaling: Search Space
4.2.1 Booleans. As expected, the SAT solver quickly grows
unmanageable as input increases. Perhaps the best indicator
of the model’s rapid growth is the number of required Shift
Variables, or booleans used to indicate that shift s is assigned
to interpreter i with teacher t on day d. The number of shift
variables is defined by the following formula, where each
interpreter is thus able to consider an individual teacher
schedule for every teacher. Here, |S| represents the number
of shift variables, |D| the number of days, |T | the number of
teachers and |I | the number of interpreters:

|𝑆 | = Maximum Daily Meetings · |𝐷 | · |𝑇 | · |𝐼 |

The rapid growth of required shift variables is illustrated
in Figure 6a, where the Number of Booleans represents the
number of shift variables required for each model. Each
model receives as input a number of total schedules, made up
of all teacher meeting requests and all interpreter availability.

4.2.2 Propagations. Derived from the number of booleans,
the number of propagations also increases dramatically as
the input size grows. Propagations, or the generation of
clauses on boolean variables, quickly reaches 2.4 million for
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(a) The number of required booleans - or Shift Variables -
quickly increases as the number of considered schedules
increases. When creating a model with 320 total schedules,
the number of required Shift Variables is approximately 1.5

million.
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(b) The generation of clauses quickly accelerates with a
growing number of input schedules. Such a large number of
clauses contributes to the model’s slow performance; indeed,
creating an optimal arrangement of 320 schedules requires

nearly 9 million propagations.

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

1,750,000

2,000,000

2,250,000

2,500,000

2,750,000

3,000,000

3,250,000

3,500,000

0 50 100 150 200 250 300 350
Number of Schedules

Nu
m

be
r o

f B
ra

nc
he

s

Scaling the Solver:
Schedules & Branches

(c) The search space grows exponentially large as the number
of considered schedules increases. As demonstrated above, a
model considering 320 total schedules will traverse upwards
of 3.2 million branches in the search tree before determining

the optimal schedule.

Figure 6. The solver traverses an increasingly non-viable search space as the input grows in size.

6



A SAT Based Scheduler CS292C: Computer-Aided Reasoning for Software, UC Santa Barbara

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400
Number of Schedules

Ti
m

e 
(s

ec
on

ds
)

Solver Runtime: Deterministic Time

(a) Deterministic Time measures model time without
considering time used by the machine to perform typical

operating system tasks. Total Deterministic Time used by the
model is considerably less than total User Time.

0

200

400

600

800

1000

1200

1400

0 100 200 300 400
Number of Schedules

Ti
m

e 
(s

ec
on

ds
)

Solver Runtime: User Time

(b) User Time measures the total time the user spent waiting
while the model searched for an optimal schedule. User Time
was as long as 20 minutes when considering the optimal

arrangement of 320 total schedules.

Figure 7. Model time increases exponentially as the solver considers a growing number of schedules.

an input size as small as 55 total schedules. Indeed, when the
input is scaled significantly - up to 320 total schedules - the
number of propagations explodes to 8.8 million. Figure 6b
demonstrates just how many clauses are generated with an
increasing number of schedules.

4.2.3 Branches. The number of branches in the search
tree quickly escalates as the model considers an increasing
number of total schedules. As the solver explores all search
branches - determining whether or not a branch is a dead
end - the time required to produce an optimal schedule thus
increases in tandem. Figure 6c illustrates the relationship
between branches and schedules, where a model considering
320 total schedules will traverse up to 3.3 million branches.

4.3 Scaling: Time
The CP-SAT solver adopted from Google’s open source soft-
ware suite OR-Tools provides an array of performance sta-
tistics following successful execution. One statistic, or De-
terministic Time, indicates the solver’s total runtime when
disregarding unrelated loads on the user’s machine. Accord-
ing to Google, the majority of the solver’s total runtime can
be attributed to the standard side effects sustained by the
operating system, such as context switches, core switches,
cache misses and the like. In order to differentiate between
the model’s Deterministic Time and total runtime, Google
provides an additional statistic, or User Time, to indicate the

total time the model took to reach an optimal schedule on the
user’s machine. Figure 7 illustrates both Deterministic Time
and User Time in relation to a scaled number of considered
schedules.

5 Results

In order to best determine the feasibility of deploying
the CP-SAT solver in production, the model was fed an an-
nonymized version of the Spring 2020 dataset used by the
Interdisciplinary Humanities Center at UC Santa Barbara to
match volunteer interpreters with student-teacher confer-
ences. The dataset includes 45 teacher request calendars and
62 interpreter availability calendars, or 107 total schedules.
Interpreters were restricted to work at least one shift per
week (Min Weekly Meetings = 1) and at most two shifts per
day (Max Daily Meetings = 2). The following statistics were
output upon deriving the optimal schedule:

Model User Time: 38.23 secs

Teachers: 45
Interpreters: 62

Total Meeting Requests: 279
Total Meetings Matched: 278

Min Weekly Meetings: 1
7
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Figure 8. The final schedule output by the solver when considering annonymized interpreter and
teacher schedules from the Spring 2020 Interdisciplinary Humanities Center dataset.

Max Daily Meetings: 2

Interpreter Weekly Meetings Table
0 weekly meetings: 1
1 weekly meetings: 2
2 weekly meetings: 5
3 weekly meetings: 8
4 weekly meetings: 22
5 weekly meetings: 5
6 weekly meetings: 10
7 weekly meetings: 4
8 weekly meetings: 4
9 weekly meetings: 1
10 weekly meetings: 0

Min Meetings per Interpreter: 0
Med Meetings per Interpreter: 4
Avg Meetings per Interpreter: 4.5
Max Meetings per Interpreter: 9

The final, most optimal schedule arranged by the solver
is displayed in Figure 8. The output schedule is grouped in
ascending order by interpreter, where each interpreter is pre-
sented alongside their assigned student-teacher conferences
(as indicated by the corresponding teacher, day and shift
number). The schedule thus provides an ideal solution for

optimally organizing fair, pracical and convenient schedules
for interpreters and teachers alike.

6 Future Work

As mentioned in the Introduction, the most optimal ar-
rangement of interpreters and teacher meeting requests will
take into account Transportation andConvenience constraints.
Indeed, once student-teacher conferences are no longer vir-
tual, it will be necessary to introduce new constraints. To
limit transportation costs, for instance, interpreters with
vehicles should be assigned to the most distant schools. Ad-
ditionally, interpreters should have to wait no longer than
30 minutes between meetings so to eliminate the amount of
down-time between shifts.

7 Conclusion

In this project, a SAT solver provided byGoogle’s OR-Tools
was utilized successfully to optimally arrange a schedule pair-
ing volunteer interpreters with student-teacher conferences.
Taking into account Availability, Fairness and Practicality
constraints, the model outputs a schedule that maximizes
the amount of student-teacher conferences assigned an in-
terpreter. While unable to scale efficiently, the SAT solver

8
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nonetheless provides an optimal schedule, allowing the In-
terdisciplinary Humanities Center at UC Santa Barbara to
effectively pair volunteer interpreters with student-teacher
conferences across the Goleta and Santa Barbara school dis-
tricts.
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